The Difference Between Stratified and Clusters
Although strata and clusters are both non-overlapping subsets of the population, they differ in several ways.
• All strata are represented in the sample; but only a subset of clusters are in the sample.
• With stratified sampling, the best survey results occur when elements within strata are internally homogeneous. However, with cluster sampling, the best results occur when elements within clusters are internally heterogeneous.
Cluster sampling should be used only when it is economically justified - when reduced costs can be used to overcome losses in precision. This is most likely to occur in the following situations.
Constructing a complete list of population elements is difficult, costly, or impossible. For example, it may not be possible to list all of the customers of a chain of hardware stores. However, it would be possible to randomly select a subset of stores (stage 1 of cluster sampling) and then interview a random sample of customers who visit those stores (stage 2 of cluster sampling).
The population is concentrated in "natural" clusters (city blocks, schools, hospitals, etc.). For example, to conduct personal interviews of operating room nurses, it might make sense to randomly select a sample of hospitals (stage 1 of cluster sampling) and then interview all of the operating room nurses at that hospital. Using cluster sampling, the interviewer could conduct many interviews in a single day at a single hospital. Simple random sampling, in contrast, might require the interviewer to spend all day traveling to conduct a single interview at a single hospital.
Although strata and clusters are both non-overlapping subsets of the population, they differ in several ways.
• All strata are represented in the sample; but only a subset of clusters are in the sample.
• With stratified sampling, the best survey results occur when elements within strata are internally homogeneous. However, with cluster sampling, the best results occur when elements within clusters are internally heterogeneous.
Cluster sampling should be used only when it is economically justified - when reduced costs can be used to overcome losses in precision. This is most likely to occur in the following situations.
Constructing a complete list of population elements is difficult, costly, or impossible. For example, it may not be possible to list all of the customers of a chain of hardware stores. However, it would be possible to randomly select a subset of stores (stage 1 of cluster sampling) and then interview a random sample of customers who visit those stores (stage 2 of cluster sampling).
The population is concentrated in "natural" clusters (city blocks, schools, hospitals, etc.). For example, to conduct personal interviews of operating room nurses, it might make sense to randomly select a sample of hospitals (stage 1 of cluster sampling) and then interview all of the operating room nurses at that hospital. Using cluster sampling, the interviewer could conduct many interviews in a single day at a single hospital. Simple random sampling, in contrast, might require the interviewer to spend all day traveling to conduct a single interview at a single hospital.